
From Neural Networks to the From Neural Networks to the 
Intelligent Power Grid: What ItIntelligent Power Grid: What ItIntelligent Power Grid: What It Intelligent Power Grid: What It 
Takes to Make Things WorkTakes to Make Things Workgg

What is an Intelligent Power Grid, and why do 
we need it?we need it?
Why do we need neural networks?
How can we make neural nets really work here, 
& in diagnostics/”prediction”/”control” in 
general?



What is a Truly Intelligent Power Grid?What is a Truly Intelligent Power Grid?
True intelligence (like brain) ⇒ foresight, ⇒ ability to learn 
to coordinate all pieces, for optimal expected performance 
on the bottom line in future despite random disturbances.
Managing complexity is easy– if you don’t aim for best 

ibl f ! Th h ll i t lpossible performance! The challenge is to come as close as 
possible to optimal performance of whole system.
Bottom line utility function includes value added quality ofBottom line utility function includes value added, quality of 
service (reliability), etc. A general concept. Nonlinear 
robust control is just a special case.
Enhanced communication/chips/sensing/actuation/HPC 
needed for max benefit(cyberinfrastructure, EPRI roadmap)
B i lik i t lli b di d i t lli ≠ AIBrain-like intelligence = embodied intelligence, ≠ AI



Dynamic Stochastic Optimal Power Flow Dynamic Stochastic Optimal Power Flow 
(DSOPF): How to Integrate the “Nervous (DSOPF): How to Integrate the “Nervous ( ) g( ) g

System” of ElectricitySystem” of Electricity

d fDSOPF02 started from EPRI     
question:  can we optimally 
manage&plan the whole grid as oneg p g
system, with foresight, etc.?
Closest past precedent: Momoh’s OPF 
i t t & ti i idintegrates &optimizes many grid 
functions – but deterministic and 
without foresight. UPGRADE!

ANN to I/O From Idealized Power GridANN to I/O From Idealized Power Grid

ADP math required to add          
foresight and stochastics,                             
critical to more complete integrationcritical to more complete integration.

4 General Object Types (4 General Object Types (busbarbusbar, wire, G, L), wire, G, L)

Net should allow Net should allow arbitrary numberarbitrary number of the 4 objectsof the 4 objects

How design ANN to input and output FIELDS How design ANN to input and output FIELDS ---- variables like the SET ovariables like the SET of
values for current ACROSS all objects? values for current ACROSS all objects? 



Why It is a LifeWhy It is a Life--oror--Death IssueDeath Issue

HOW?

•www.ieeeusa.org/policy/energy_strategy.ppt
•Photo credit IEEE Spectrum

As Gas Prices ⇑ Imports ⇑ & Nuclear Tech in unstable areas 
⇑⇑, human extinction is a serious risk. Need to move faster.

Optimal time-shifting – big boost to rapid adjustment, $



Why It Requires Artificial Neural Why It Requires Artificial Neural 
Networks (ANNs)Networks (ANNs)

For optimal performance in the general nonlinear caseFor optimal performance in the general nonlinear case 
(nonlinear control strategies, state estimators, predictors, 
etc…), we need to adaptively estimate nonlinear functions. 

h i l li f iThus we must use universal nonlinear function 
approximators.
Barron (Yale) proved basic ANNs (MLP) much better thanBarron (Yale) proved basic ANNs (MLP) much better than 
Taylor series, RBF, etc., to approximate smooth functions 
of many inputs. Similar theorems for approximating 
dynamic systems, etc., especially with more advanced, more 
powerful, MLP-like ANNs.
ANNs more “chip friendl ” b definition: Mosai chipsANNs more “chip-friendly” by definition: Mosaix chips, 
CNN here today, for embedded apps, massive thruput



Neural Networks That Actually Work In Neural Networks That Actually Work In 
Diagnostics Prediction & Control: CommonDiagnostics Prediction & Control: CommonDiagnostics, Prediction & Control: Common Diagnostics, Prediction & Control: Common 

Misconceptions Vs. RealMisconceptions Vs. Real--World SuccessWorld Success

Neural Nets, A Route to Learning/Intelligence
l hi b i i– goals, history, basic concepts, consciousness

State of the Art -- Working Tools Vs. Toys and 
F dFads
– static prediction/classification

d i di ti / l ifi ti– dynamic prediction/classification
– control: cloning experts, tracking, optimization

Ad d B i Lik C biliti & G idAdvanced Brain-Like Capabilities & Grids



Neural Nets: The Link Between Neural Nets: The Link Between 
VisionVision, , ConsciousnessConsciousness and and 

Practical ApplicationsPractical ApplicationsPractical ApplicationsPractical Applications
“Without vision the people perish ”Without vision, the people perish....

Wh i N l N k?What is a Neural Network?
-- 4 definitions:“MatLab,” universal approximators, 

6th i i b i lik i6th generation computing, brain-like computing
What is the Neural Network Field All About? 
H C W G B R lHow Can We Get Better Results 

in Practical Applications?



Generations of ComputersGenerations of Computers

¤ 4th Gen: Your PC. One VLSI CPU chip executes one 
sequential stream of C code.

h¤ 5th Gen: “MPP”, “Supercomputers”: Many CPU 
chips in 1 box. Each does 1 stream. HPCC.

¤ 6th Gen or “ZISC ” Ks or Millions of simple streams¤ 6th Gen or ZISC.  Ks or Millions of simple streams 
per chip or optics.  Neural nets may be defined as 
designs for 6th gen + learning. (Psaltis, Mead.)
¤ New interest; Moore, SRC; Mosaix, JPL sugarcube, CNN.

¤ 7th Gen: Massively parallel quantum computing? 
G l? G lik H fi ld?General? Grover like Hopfield?



Reinforcement

S I t ActionSensory Input

Th B i A Wh l S tThe Brain As a Whole System 
Is an Intelligent Controller



Unified Neural Network Unified Neural Network 
DesignsDesigns::

The Key to LargeThe Key to Large ScaleScaleThe Key to LargeThe Key to Large--Scale Scale 
ApplicationsApplications

& Understanding the Brain& Understanding the Brain



Electrical and Communications Systems(ECS)
Cyber Infrastructure Investments

Electrical and Communications Systems(ECS)
Cyber Infrastructure Investmentsyy

The Physical Layer – Devices and Networks
– National Nanofabrication Users Network (NNUN)( )
– Ultra-High-Capacity Optical Communications and Networking
– Electric Power Sources, Distributed Generation and Grids

Information Layer – Algorithms, Information and y g ,
Design

– General tools for distributed, robust, adaptive, hybrid control & 
related tools for modeling, system identification, estimation

– General tools for sensors-to-information & to decision/control
– Generality via computational intelligence, machine learning, neural 

networks & related pattern recognition, data mining etc.

Integration of Ph sical La er and Information La erIntegration of Physical Layer and Information Layer
– Wireless Communication Systems
– Self-Organizing Sensor and Actuator Networks

System on Chip for Information and Decision Systems

Town Hall Meeting – October 29, 2003

– System on Chip for Information and Decision Systems
– Reconfigurable Micro/Nano Sensor Arrays
– Efficient and Secure Grids and Testbeds for Power Systems



Cyberinfrastructure: The Entire Web From SensorsCyberinfrastructure: The Entire Web From Sensors
To Decisions/Actions/Control For Max PerformanceTo Decisions/Actions/Control For Max Performance

Self-Configuring
HW Modules

Sensing Comm Control

Coordinated
SW Service
C tComponents



Levels of IntelligenceLevels of Intelligence

?
SymbolicHuman

Bi d
Mammal

R til
Bird

Reptile



Why Engineers Need This Vision:

1. To Keep Track
of MANY Tools

2. To Develop
New Tools -- To
D G d R&DDo Good R&D
& Make Max
Contribution

3. To Attract &
E it th B tExcite the Best
Students

4 Engineers are4. Engineers are
Human Too...



Where Did ANNs Come From?Where Did ANNs Come From?

Specific
Problem

General Problem Solvers McCulloch
Pitts Neuron

Solvers Logical
Reasoning
Systems

Reinforcement
Learning

Widrow LMS
&Perceptrons

Systems

Expert Systems
Minsky

Backprop ‘74
Computational

Psychologists, PDP Books
p

Neuro, Hebb
Learning Folks

IEEE ICNN 1987: Birth of a “Unified” Discipline



Hebb 1949: Intelligence As AnHebb 1949: Intelligence As An
EmergentEmergent Phenomenon orPhenomenon orEmergentEmergent Phenomenon or Phenomenon or 

LearningLearning
“The general idea is an old one,g ,
that any two cells or systems of 
cells that are especially active
at the same time will tend toat the same time will tend to 
become ‘associated,’ so that
activity in one facilitates
activity in the other” -- p.70
(Wiley 1961 printing)

The search for the General
Neuron Model (of Learning)

“Solves all problems”



Claim (1964) : Hebb’s Claim (1964) : Hebb’s 
Approach Doesn’t Quite Work Approach Doesn’t Quite Work 

As StatedAs StatedAs StatedAs Stated
Hebbian Learning Rules Are All Based on 
Correlation Coefficients
Good Associative Memory: one component of the 
larger brain (Kohonen, ART, Hassoun)
Linear decorrelators and predictors
Hopfield f(u) minimizers never scaled, but:
– Gursel Serpen and SRN minimizers
– Brain-Like Stochastic Search (Needs R&D)



Understanding Brain Requires
Models Tested/Developed

Using Multiple Sources of InfoUsing Multiple Sources of Info
• Engineering: Will it work? MathematicsEngineering: Will it work? Mathematics 

understandable, generic?
• Psychology: Connectionist cognitive• Psychology: Connectionist cognitive 

science, animal learning, folk psychology
N i t ti l i• Neuroscience: computational neuroscience

• AI: agents, games (backgammon, go), etc.
• LIS and CRI 



19711971--2: Emergent Intelligence Is Possible2: Emergent Intelligence Is Possible
If We Allow Three Types of Neuron If We Allow Three Types of Neuron ypyp

(Thesis,Roots)(Thesis,Roots)
J(t+1)

Critic
( )

R(t+1)
X(t)

Model
X(t)

R( )
Red Arrows:
Derivatives

u(t)R(t) Derivatives
Calculated By
Generalized
B k tiAction Backpropagation



Harvard Committee ResponseHarvard Committee Response

We don’t believe in neural networks – see Minsky 
(Anderson&Rosenfeld, Talking Nets)
Prove that your backwards differentiation works. 
(That is enough for a PhD thesis.) The critic/DP 
stuff published in ’77,’79,’81,’87..
Applied to affordable vector ARMA statistical 
estimation, general TSP package, and robust 
political forecasting



Y, a scalar result

SYSTEM

x1

∂+Y{ }SYSTEM.
.

∂ Y
∂xK

{ }

xn

. W

(Inputs xk may actually come from many times)( p k y y y )

Backwards Differentiation: But what kinds
of SYSTEM can we handle? See details inof SYSTEM can we handle? See details in 
AD2004 Proceedings, Springer, in press.





To Fill IN the Boxes:To Fill IN the Boxes:
(1) NEUROCONTROL, to Fill in Critic or (1) NEUROCONTROL, to Fill in Critic or ( )( )

Action;Action;
(2) System Identification or Prediction(2) System Identification or Prediction( ) y( ) y
(Neuroidentification) to Fill In Model(Neuroidentification) to Fill In Model

J(t+1)
Critic

J(t+1)

R(t+1)

Model

R(t+1)
X(t)

R( )
Red Arrows:
Derivatives

Action
u(t)R(t) Derivatives

Calculated By
Generalized
Backpropagation



NSF Workshop Neurocontrol 1988NSF Workshop Neurocontrol 1988

Control Neuro-
i i

Neuro-
Theory EngineeringControl

Miller, Sutton, Werbos, MIT Press, 1990, , , ,

Neurocontrol is NOT JUST Control Theory!



NSF/McAir Workshop 1990 

White and Sofge eds, Van Nostrand, 1992



“What Do Neural Nets & “What Do Neural Nets & 
Q tQ tQuantumQuantum

Theory Tell Us About Mind &Theory Tell Us About Mind &Theory Tell Us About Mind & Theory Tell Us About Mind & 
Reality?”Reality?”

In Yasue et al (eds),In Yasue et al (eds),In Yasue et al (eds),In Yasue et al (eds),
No Matter, Never Mind No Matter, Never Mind ---- Proc.Proc.

Of Towards a Science of Of Towards a Science of 
ConsciousnessConsciousness John BenjaminsJohn BenjaminsConsciousnessConsciousness, John Benjamins, John Benjamins
(Amsterdam), 2001 & arxiv.org(Amsterdam), 2001 & arxiv.org



3 Types of Diagnostic System3 Types of Diagnostic System

All 3 train predictors, use sensor data X(t),                   
other data u(t), fault classifications F1 to Fm

Type 1: predict Fi(t) from X(t), u(t), MEMORY
Others: first train to predict X(t+1) from X,u,MEM
– Type 2: when actual X(t+1) 6σ from prediction, ALARM
– Type 3: if prediction net predicts BAD X(t+T), ALARM

Combination best. See PJW in Maren, ed, Handbook 
Neural Computing Apps, Academic, 1990.



Supervised Learning Systems (SLS)

SLS
u(t) Predicted X(t)

SLSinputs outputs

Actual X(t)Actual X(t)
targets

SLS may have internal dynamics but 
“ ” f ti t 1 t 2no “memory” of times t-1, t-2...



pH(t)

F(t 3) F(t 2) F(t 1) pH(t 3) pH(t 2) pH(t 1)F(t-3)             F(t-2)             F(t-1)            pH(t-3)         pH(t-2)         pH(t-1)

Example of TDNN used in HIC, Chapter 10p , p
TDNNs learn NARX or FIR Models, not NARMAX or IIR



CONVENTIONAL ANNS USED FOR CONVENTIONAL ANNS USED FOR 
FUNCTION APPROXIMATION INFUNCTION APPROXIMATION INFUNCTION APPROXIMATION IN FUNCTION APPROXIMATION IN 

CONTROLCONTROL

• Global: Multilayer Perceptron (MLP)
— Better Generalization Slower LearningBetter Generalization, Slower Learning

— Barron’s Theorems: More Accurate Approximation of 

S th F ti N b f I t GSmooth Functions as Number of Inputs Grows

• Local: RBF, CMAC, Hebbian
— Like Nearest Neighbor, Associative Memory

— Sometimes Called “Glorified Lookup tables”Sometimes Called Glorified Lookup tables



Generalized MLPGeneralized MLPGeneralized MLPGeneralized MLP

0 1 m m+1 N N+1 N+n

Inputs Outputs

1          x1 xm Y1 Yn



No feedforward or associative No feedforward or associative 
memory net can give brainmemory net can give brain likelikememory net can give brainmemory net can give brain--likelike

performance! Useful performance! Useful pp
recurrencerecurrence----

F h t t f t t ti tiFor short-term memory, for state estimation, 
for fast adaptation – time-lagged recurrence
needed (TLRN = time-lagged recurrent net)needed. (TLRN  time-lagged recurrent net)
For better Y=F(X,W) mapping, Simultaneous
Recurrent Networks Needed For large-scaleRecurrent Networks Needed. For large-scale 
tasks, SRNs WITH SYMMETRY tricks 
needed – cellular SRN, Object Nets, j
For robustness over time, “recurrent training”



Why TLRNs Vital in Prediction: Why TLRNs Vital in Prediction: 
Correlation Correlation ≠≠ Causality!Causality!

E.g.: law X sends extra $ to schools with low test 
scores

i l i f $ i hDoes negative correlation of $ with test scores 
imply X is a bad program? No! Under such a law, 
negative correlation is hard-wired. Low test scoresnegative correlation is hard wired. Low test scores 
cause $ to be there! No evidence + or – re the 
program effect!
Solution: compare $ at time t with performance 
changes from t to t+1! More generally/accurately: 
train dynamic model/network – essential to anytrain dynamic model/network – essential to any 
useful information about causation or for decision!



The TimeThe Time--LaggedLaggedThe TimeThe Time Lagged Lagged 
Recurrent Network (TLRN)Recurrent Network (TLRN)

Any Static Network

X(t)

R(t-1)

Y(t)

R(t-1)yR(t 1) R(t 1)

z-1

Y(t)=f(X(t), R(t-1)); R(t)=g(X(t), R(t-1))
f and g represent 2 outputs of one network
All-encompassing, NARMAX(1 ≡ n)
Felkamp/Prokhorov Yale03: >>EKF,≈ hairy



4(4(55) Ways to Train TLRNs ) Ways to Train TLRNs 
(SRN)(SRN)

(arXiv org adap(arXiv org adap--org 9806001)org 9806001)(arXiv.org, adap(arXiv.org, adap org 9806001)org 9806001)
“Simple BP” – incorrect derivatives due to 
truncated calaculation, robustness problemtruncated calaculation, robustness problem
BTT – exact, efficient, see Roots of BP (’74), but 
not brain-like (back time calculations)( )
Forward propagation – many kinds (e.g, Roots, 
ch.7, 1981) – not brainlike, O(nm)) ( )
Error Critic– see Handbook ch. 13, Prokhorov
Simultaneous BP – SRNS only. y



4 Training Problems Recurrent 4 Training Problems Recurrent 
NetsNetsNetsNets

Bugs – need good diagnosticsg g g
“Bumpy error surface” – Schmidhuber says 
is common, Ford not. Sticky neuron, , y ,
RPROP, DEFK (Ford), etc.
Shallow plateaus – adaptive learning rate, p p g ,
DEKF etc., new in works…
Local minima – shaping, unavoidable p g,
issues, creativity



GENERALIZED MAZE PROBLEMGENERALIZED MAZE PROBLEMGENERALIZED MAZE PROBLEMGENERALIZED MAZE PROBLEM

Jhat(ix,iy) for all 0<ix,iy<N+1( , y) , y
(an N by N array)

NETWORK

Maze Description
- Obstacle (ix,iy) all ix,iy
- Goal (ix,iy) all ix,iy

At arXiv.org, nlin-sys, see adap-org 9806001



4 3 2 1 24 3 2 1 2
5 1 0 1
6 7 1 2
7 8 7 3
8 7 6 5 4





IDEA OF SRN: TWO TIME INDICES t vs. IDEA OF SRN: TWO TIME INDICES t vs. 
nn

2nd Movie
F N t N ty(1)(2) y(2)(2)
Frame
X(t=2)

Net Net
y(0)

y ( )

1st Movie
Frame
1st Movie
Frame y(1)(1) y(2)(1)Frame,
X(t=1)
Frame
X(t=1) Net Net

y(0)

y( )(1) y( )(1)

Yhat(1)=y(20)(1)y( ) Yhat(1)=y( )(1)



ANN to I/O From Idealized Power ANN to I/O From Idealized Power 
GridGridGridGrid

4 General Object Types (busbar, wire, G, L)
Net should allow arbitrary number of the 4 objects
How design ANN to input and output FIELDS -- variables like the 
SET of values for current ACROSS all objects? 



Training: BrainTraining: Brain--Style Prediction Is Style Prediction Is 
NOT J t TiNOT J t Ti S i St ti ti !S i St ti ti !NOT Just TimeNOT Just Time--Series Statistics!Series Statistics!

One System does it all -- not just a collection ofOne System does it all not just a collection of 
chapters or methods
Domain-specific info is 2-edged sword:p g
– need to use it; need to be able to do without it

Neural Nets demand/inspire new work on general-
i b bili i d d ipurpose prior probabilities and on dynamic 

robustness (See HIC chapter 10)
SEDP&Kohonen: general nonlinear stochastic IDSEDP&Kohonen: general nonlinear stochastic ID
of partially observed systems



Three Approaches toThree Approaches toThree Approaches to Three Approaches to 
PredictionPrediction

Bayesian: Maximize Pr(Model|data)
– “Prior probabilities” essential when many inputs

Minimize “bottom line” directly
– Vapnik: “empirical risk” static SVM and “sytructural 

risk” error bars around same like linear robust controlrisk  error bars around same like linear robust control 
on nonlinear system

– Werbos ’74 thesis: “pure robust” time-series
li C bi d di d b liReality: Combine understanding and bottom line.

– Compromise method (Handbook)
Model-based adaptive critics– Model-based adaptive critics

Suykens, Land???? 



pH(t)

F(t 3) F(t 2) F(t 1) pH(t 3) pH(t 2) pH(t 1)F(t-3)             F(t-2)             F(t-1)            pH(t-3)         pH(t-2)         pH(t-1)

Example of TDNN used in HIC, Chapter 10p , p
TDNNs learn NARX or FIR Models, not NARMAX or IIR



Prediction Errors (HIC Prediction Errors (HIC 
p.319)p.319)p )p )

40

30

35 Conventional
Pure Robust

20

25

10

15

0

5

Pretreater Sedimentation Averageg



PURE  ROBUST  METHODPURE  ROBUST  METHOD

Model Network Error
X(t+1)

X(t+1)
u(t)

X(t)

Model Network

X(t)

X(t)
X(t)u(t-1)

Model Network ( )
Error

X(t-1)



NSF Workshop Neurocontrol NSF Workshop Neurocontrol 
1988198819881988

Control Neuro-
i i

Neuro-
Theory EngineeringControl

Miller, Sutton, Werbos, MIT Press, 1990, , , ,

Neurocontrol is NOT JUST Control Theory!



What Is Control?What Is Control?
z-1

Plant or 
Environment

R

v o e
Control Variables 
(Actions) u(t)

Observables X(t)

Control system

• t may be discrete (0, 1, 2, ...) or continuous
• “Decisions” may involve multiple time scales



Major Choices In Control (A Major Choices In Control (A j (j (
Ladder)Ladder)

•SISO (old) versus. MIMO (modern & CI)

•Feedforward versus Feedback•Feedforward versus Feedback

•Fixed versus Adaptive versus LearningFixed versus Adaptive versus Learning 

— e.g learn to adapt to changing road traction

•Cloning versus Tracking versus Optimization



3 Design 3 Design 
Approaches/Goals/TasksApproaches/Goals/Tasks

•CLONING: Copy Expert or Other Controller

— What the Expert Says (Fuzzy or AI)

What the E pert Does (Prediction of H man)— What the Expert Does (Prediction of Human)

•TRACKING: Set Point or Reference Trajectory

— 3 Ways to Stabilize; To Be Discussed

•OPTIMIZATION OVER TIME•OPTIMIZATION OVER TIME

— n-step Lookahead vs. LQG (Stengel, Bryson/Ho)

— vs. Approximate Dynamic Programming (Werbos)



NSF-NASA Workshop on Learning/Robotics
For Cheaper (Competitive) Solar PowerFor Cheaper (Competitive) Solar Power

See NSF 02-098 at www.nsf.gov &URLs



Human mentors robot and then Human mentors robot and then 
robot improves skillrobot improves skill

Learning allowed robot to 
quickly learn to imitateq y
human, and then improve
agile movements (tennisg (
strokes). Learning many 
agile movements quickly g q y
will be crucial to enabling 
>80% robotic assembly Schaal, Atkeson y
in space.

Schaal, Atkeson
NSF ITR project



Three Ways To Get  StabilityThree Ways To Get  Stability
Robust or H Infinity Control                    

(Oak Tree)(Oak Tree)
Adaptive Control (Grass)
Learn Offline/Adaptive Online 

(Maren 90)( )
– “Multistreaming” (Ford, Felkamp et al)

Need TLRN Controller Noise Wrapper– Need TLRN Controller, Noise Wrapper
– ADP Versions: Online or “Devil Net”



Example from Hypersonics:Example from Hypersonics:
Parameter Ranges for Stability (HParameter Ranges for Stability (H∞∞

θ2

Center of Gravity
t 12 M tat 12 Meters

C t f G it
θ1

Center of Gravity
at 11.3 Meters



Idea of Indirect Adaptive Idea of Indirect Adaptive 
ControlControlControlControl

Error =Desired “State” Xr(t+1)
(X - Xr)2

Desired State  Xr(t+1)

Action
N t k

Model
N t k

X(t+1)u(t)

Network Network
Derivatives
of Error

Actual State R(t)
of Error

(Backpropagated)



Backpropagation Through Time Backpropagation Through Time 
(BTT) for Control (Neural MPC)(BTT) for Control (Neural MPC)(BTT) for Control (Neural MPC)(BTT) for Control (Neural MPC)

Action Modelu(t+1)
( )Network

Model
Network

Xr(t+1)

Error =
(X - Xr)2

Predicted X(t+1)
(X Xr)

u(t)Action
N t k

Model
N t k

Xr(t)
Network Network

Error =Predicted X(t)

( )

Error 
(X - Xr)2

Predicted X(t)



Level 3 (HDP+BAC) Adaptive Critic Level 3 (HDP+BAC) Adaptive Critic 
SystemSystemSystemSystem

C i i
J(t+1)

Critic
R(t+1)R(t+1)

X(t)
Model

R(t)

Action
u(t)R(t)

Action



Reinforcement Learning Systems (RLS)

External
Environment

or “Plant”
“utility” or “reward”
or “reinforcement”

U(t)

RLS u(t)X(t)
i t RLS actionssensor inputs

RLS may have internal dynamics andRLS may have internal dynamics and
“memory” of earlier times t-1, etc.



Maximizing utility over timeMaximizing utility over time
Model of reality Utility function UUtility function U

Dynamic programming
J (x(t)) = Max

u( t)
U (x(t), u(t)) + J (x( t + 1)) /(1 + r )

u( t)

Secondary, or strategic utility function JSecondary, or strategic utility function J



Beyond Bellman: Learning & Beyond Bellman: Learning & 
Approximation for Optimal Management Approximation for Optimal Management pp p gpp p g

of Larger Complex Systemsof Larger Complex Systems

Basic thrust is scientific. Bellman gives exact optima for 
1 or 2 continuous state vars. New work allows 50-100 
(thousands sometimes) Goal is to scale up in space and(thousands sometimes). Goal is to scale up in space and 
time -- the math we need to know to know how brains do 
it. And unify the recent progress.it. And unify the recent progress.
Low lying fruit -- missile interception, vehicle/engine 
control, strategic games, g g
New book from ADP02 workshop in Mexico 
www.eas.asu.edu/~nsfadp (IEEE Press, 2004, Si et al p (
eds)



Emerging Ways to Get Closer to Emerging Ways to Get Closer to 
BrainBrain--Like SystemsLike Systems

IEEE Computational Intelligence (CI) Society, new 
to 2004, about 2000 people in meetings.
C t l l “ d t d l i ” f tCentral goal: “end-to-end learning” from sensors to 
actuators to maximize performance of plant over 
future, with general-purpose learning ability., g p p g y
This is DARPA’s “new cogno” in the new nano-info-
bio-cogno convergence
This is end-to-end cyberinfrastructure
– See hot link at bottom of www.eng.nsf.gov/ecs

Wh t’ i th t k it lWhat’s new is a path to make it real



4 Types of Adaptive Critics4 Types of Adaptive Criticsyp pyp p
Model-free (levels 0-2)*
– Barto-Sutton-Anderson (BSA) design, 1983

Model-based (levels 3-5)*
– Werbos Heuristic dynamic programming with 

backpropagated adaptive critic, 1977, Dual heuristic 
programming and Generalized dual heuristicprogramming and Generalized dual heuristic 
programming, 1987

Error Critic (TLRN, cerebellum models)( )
2-Brain, 3-Brain models



Beyond Bellman: Learning & Beyond Bellman: Learning & 
A i ti f O ti lA i ti f O ti lApproximation for Optimal Approximation for Optimal 

Management of Larger Complex Management of Larger Complex 
SystemsSystemsBasic thrust is scientific. Bellman gives exact 

optima for 1 or 2 continuous state vars. New work p
allows 50-100 (thousands sometimes). Goal is to 
scale up in space and time -- the math we need to 
know to know how brains do it And unify theknow to know how brains do it. And unify the 
recent progess.
Low lying fruit -- missile interception, y g p ,
vehicle/engine control, strategic games
Workshops: ADP02 in Mexico 
b i l d / f d di d k hebrains.la.asu.edu/~nsfadp; coordinated workshop 

on anticipatory optimization for power.



New Workshop on ADP: New Workshop on ADP: 
text/notes attext/notes attext/notes at text/notes at 

www.eas.asu.edu/~nsfadp www.eas.asu.edu/~nsfadp pp
Neural Network Engineering
– Widrow 1st ‘Critic’ (‘73), Werbos ADP/RL (‘68-’87)
– Wunsch, Lendaris, Balakrishnan, White, Si,LDW......

Control Theory
– Ferrari/Stengel (Optimal), Sastry, Lewis, VanRoy 

(Bertsekas/Tsitsiklis),Nonlinear Robust...( ),
Computer Science/AI
– Barto et al (‘83), TD, Q, Game-Playing, ..........

Operations ResearchOperations Research
– Original DP: Bellman, Howard; Powell

Fuzzy Logic/Control
– Esogbue, Lendaris, Bien



Level 3 (HDP+BAC) Adaptive Critic Level 3 (HDP+BAC) Adaptive Critic 
SystemSystemSystemSystem

C i i
J(t+1)

Critic
R(t+1)R(t+1)

X(t)
Model

R(t)

Action
u(t)R(t)

Action



Dual Heuristic Programming Dual Heuristic Programming 
(DHP)(DHP)(DHP)(DHP)

Critic

R(t+1) λ(t+1)=∂J(t+1)/∂R(t+1)

Model Utility

Action

R(t)
Target=λ*(t)



Don Don WunschWunsch, Texas Tech, Texas Tech
ADPADP T b tT b t C t lC t lADP ADP TurbogeneratorTurbogenerator ControlControl

CAREER 9702251CAREER 9702251CAREER 9702251, CAREER 9702251, 
9704734, etc.9704734, etc.

Stabilized voltage &Stabilized voltage & 
reactance under intense 
disturbance where 
neuroadaptive & usual 
methods failed
B i i l t d iBeing implemented in 
full-scale experimental 
grid in South Africag
Best paper award 
IJCNN99



Uses of the Main Critic Uses of the Main Critic 
D iD iDesignsDesigns

HDP=TD For DISCRETE set of 
Choices
DHP when action variables u are 
continuouscontinuous
GDHP when you face a mix of both 
(b t p t ero eight on ndefined(but put zero weight on undefined 
derivative)
See arXiv. org , nlin-sys area, adap-org 
9810001 for detailed history, equation, 



From Today’s Best ADP to True From Today’s Best ADP to True yy
(Mouse(Mouse--)Brain)Brain--Like IntelligenceLike Intelligence

ANNs For Distributed/Network I/O: “spatial 
chunking,”  ObjectNets, Cellular SRNs
Ways to Learn Levels of a Hierarchical Decision 
System – Goals, Decisions
“Imagination” Networks, which learn from domain 
knowledge how to escape local optima (Brain-Like 
Stochastic Search BLiSS)
Predicting True Probability Distributions



ANN to I/O From Idealized Power ANN to I/O From Idealized Power 
GridGridGridGrid

4 General Object Types (busbar, wire, G, L)
Net should allow arbitrary number of the 4 objects
How design ANN to input and output FIELDS -- variables like the 
SET of values for current ACROSS all objects? 



Simple Approach to GridSimple Approach to Grid--Grid Grid 
Prediction in Feedforward (FF)Prediction in Feedforward (FF)Prediction in Feedforward (FF) Prediction in Feedforward (FF) 

CaseCase

Train 4 FF Nets, one for each TYPE of 
object, over all data on that object.j , j
E.g.: Predict Busbar(t+1) as function of 
Busbar(t) and Wire(t) for all 4 wires linked ( ) ( )
to that busbar (imposing symmetry). 
Dortmund diagnostic system uses this ideag y
This IMPLICITLY defines a global FF net 
which inputs X(t) and outputs grid predictionp ( ) p g p



ObjectNets: A Recurrent ObjectNets: A Recurrent 
G li ti ( ith t t)G li ti ( ith t t)Generalization (with patent)Generalization (with patent)

Define a global FF Net, FF, as the combination of 
local object model networks, as beforelocal object model networks, as before
Add an auxiliary vector, y, defined as a field over the 
grid (just like X itself)g (j )
The structure of the object net is an SRN:
– y[k+1] = FF( X(t), y[k], W)y ( ( ), y , )
– prediction (e.g. X(t+1)) = g(y[∞])

Train SRNs as in xxx.lanl.gov, adap-org 9806001
General I/O Mapping -- Key to Value Functions



Four Advanced CapabilitiesFour Advanced Capabilities

ANNs For Distributed/Network I/O: “spatial 
chunking,”  ObjectNets, Cellular SRNs
Ways to Learn Levels of a Hierarchical Decision 
System
“Imagination” Networks, which learn from domain 
knowledge how to escape local optima (Brain-Like 
Stochastic Search BLiSS)
Predicting True Probability Distributions



Forms of Temporal ChunkingForms of Temporal Chunking
Brute Force, Fixed “T”, Multiresolution
– “Clock Based Synchronization”, NISTClock Based Synchronization , NIST
– e.g., in Go, predict 20 moves ahead

Action Schemas or Task ModulesAction Schemas or Task Modules
– “Event Based Synchronization”:BRAIN

Mill /G/P ib B b R ll– Miller/G/Pribram, Bobrow, Russell, me...



Lookup Table Adaptive Lookup Table Adaptive 
C iti 1C iti 1Critics 1Critics 1

p1
<U(x)> =

U1 UN

pN

SUM (over i) Ui pi
pN

= UTp or UTx

Where pi = Pr(xi) AND Mij = Pr(xi(t+1) | xi(t))



Review of Lookup Table Review of Lookup Table 
Critics 2Critics 2Critics 2Critics 2

Bellman: J(x(t)) = <U(x(t)) + J(x(t+1))>

JTx = UTx + JTMxJ x  U x  J Mx

JT = UT(I-M)-1( )



Learning Speed of Critics...Learning Speed of Critics...
Usual Way: J(0) = U, J(n+1) = U + MTJ(n)

– After n iterations, J(t) approximatesAfter n iterations, J(t) approximates 
– U(t) + U(t+1) + ... + U(t+n)

DOUBLING TRICK shows one can beDOUBLING TRICK shows one can be 
faster: JT =UT(I+M) (I+M2) (I+M4)...

After n BIG iterations J(t) approximates– After n BIG iterations, J(t) approximates
– U(t) + U(t+1) + ... + U(t+2n)



But: What if M is Sparse, But: What if M is Sparse, p ,p ,
Block Structured, and Big??Block Structured, and Big??
M-to-the-2-to-the-nth Becomes a MESS
Instead use the following equation the keyInstead use the following equation, the key 
result for the flat lookup table case:

Ji
T = (Ji

A)T +SUM (over j in N(i)) JJ
T(JB )i

J

where JA represents utility within valley i before exit,
and JB works back utility from the exits in New valleys jy y j
within the set of possible next valleys N(i)



Structure of a Decision BlockStructure of a Decision Block

BLOCK “A”
Decision
     A Fuzzy Goal 

Image gA+

Modifiers
     uA

Image gA+

g0, g1, w, r*
Internal Nets: JA0 Critic (local U)
                  JAI Critic (p(A) result) 
     Local Action or Decision NetA
      STOCHASTIC p(A) Predictor

Info From

Hi h
      e(A)
entry states p(A)

Higher
Blocks

entry states        p(A)
post-exist statesNets: JA-, gA-(i)

Net: JA+



Conventional Encoder/Decoder Conventional Encoder/Decoder 
(“PCA”)(“PCA”)( )( )

HiddInput
Vector X Encoder

Hidden
Layer

R
Decoder

R

P di iPrediction
of XERROR



Stochastic ED (See HIC Ch. 13)

Noise Generator
With Adaptive Weights

Input Encoder Initial
D d

With Adaptive Weights

SimulatedInput
X

Encoder R DecoderSimulated
R

P di tiMutual Prediction
of X

Mutual
Information

Full Design Also Does the Dynamics Right



CEREBRAL CORTEX
Layers I to III

Layer IV: Receives InputsLayer IV: Receives Inputs
Layer V: Output Decisions/Options
Layer VI: Prediction/State Output

BASAL
GANGLIA THALAMUSGANGLIA

(Engage Decision)

THALAMUS

BRAIN STEM AND CEREBELLUM

MUSCLES


